Mixed-mean inequalities for subsets

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Note on Mixed-Mean Inequalities

We give a simpler proof of a result of Holland concerning a mixed arithmetic-geometric mean inequality. We also prove a result of mixed mean inequality involving the symmetric means.

متن کامل

Some weighted operator geometric mean inequalities

In this paper, using the extended Holder- -McCarthy inequality, several inequalities involving the α-weighted geometric mean (0<α<1) of two positive operators are established. In particular, it is proved that if A,B,X,Y∈B(H) such that A and B are two positive invertible operators, then for all r ≥1, ‖X^* (A⋕_α B)Y‖^r≤‖〖(X〗^* AX)^r ‖^((1-α)/2) ‖〖(Y〗^* AY)^r ‖^((1-α)/2) ‖〖(X〗^* BX)^r ‖^(α/2) ‖〖(Y...

متن کامل

Some More Inequalities for Arithmetic Mean, Harmonic Mean and Variance

We derive bounds on the variance of a random variable in terms of its arithmetic and harmonic means. Both discrete and continuous cases are considered, and an operator version is obtained. Some refinements of the Kantorovich inequality are obtained. Bounds for the largest and smallest eigenvalues of a positive definite matrix are also obtained.

متن کامل

Mean Value Inequalities

In this article, we will discuss various issues concerning when a complete Riemannian manifold possesses a global mean value inequality for positive subsolutions of either the Laplace equation or the heat equation. This study is motivated by the recent result of the first author [L1]. In that paper, he proved estimates on the dimensions of spaces of harmonic functions of at most polynomial grow...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2004

ISSN: 0002-9939,1088-6826

DOI: 10.1090/s0002-9939-04-07384-8